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Abstract

As an alternative with potential connections to actual experiments, other than
the systems more usually used in the field of entanglement, the dynamics
of entropy correlation and entanglement between two anharmonic vibrations
in a well-established algebraic model, with parameters extracted from fitting
to highly excited spectral experimental results for molecules H2O and SO2,
is studied in terms of the linear entropy and two negativities for various
initial states that are respectively taken to be the mixed density matrices of
thermal states and squeezed states on each mode. For a suitable parameter in
initial states the entropies in two stretches can show positive correlation or
anti-correlation. And the linear entropy of each mode is positively correlated
with the negativities just for the mixed-squeezed states with small parameters
in H2O while they do not display any correlation in other cases. For the
mixed-squeezed states the negativities exhibit dominantly positive correlations
with an effective mutual entropy. The differences in the linear entropy and the
negativities between H2O and SO2 are discussed as well. Those are useful for
molecular quantum computing and quantum information processing.

PACS numbers: 03.65.Ud, 03.67.Mn, 33.20.Tp

1. Introduction

Entanglement is a quantum-mechanical feature that can be used for many fascinating
applications including teleportation [1], quantum cryptography [2] and quantum computation
[3]. To quantify the degree to which a state is entangled is a central task for quantum
information processing and, correspondingly, several measures of it have been introduced.
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Those are entanglement of formation [4], entanglement of distillation [5], relative entropy
of entanglement [6], linear entropy of entanglement [7], concurrence [8], negativity
[9, 10] and so forth. Those measures of entanglement have motivated considerable research.
One of such researches is to characterize the properties of entangled states [11–14] and,
consequently, some important ideas such as collapse and revival of entanglement in two
interacting qubits [12], entanglement reciprocation between qubits and continuous variables
[13], and entanglement transfer from continuous variables to multiple qubits [14] have been
proposed, where continuous-variable-type entangled states are considered. Since all bipartite
entangled states are useful for information processing [15], it is still interesting to investigate
entanglement in a bipartite system.

Another research is to explore the correlation between one measure of entanglement
and other quantities that are easier to compute [16–18]. A relationship between negativity
and uncertainty products has been established for asymmetric two-mode Gaussian states
[17]. For a mixed state anti-correlation is observed between the entanglement of formation
and participation ratio, whereas a strong correlation is observed between the entanglement
of formation and negativity [18]. In addition, calculation of a more tractable measure can
allow one to at least work out the correct ordering for other measures [19–21]. However,
those investigations [16–21] concentrate on static properties of entanglement. We are here
interested in the negativity as a measure of entanglement for its simplicity as well as its wide
applicability in order to discuss its dynamical correlation with quantum mutual entropy [26].

The purpose of this paper is twofold. On the one hand, we shall study the dynamics
of entropy correlation and entanglement between vibrations in molecules H2O and SO2,
where molecular parameters have been optimized from experimental spectra by Iachello and
coworkers [22]. The entropy in each vibration is described by the linear entropy [7] as it
is related to purity. Two negativities are employed to measure the entanglement with two
kinds of initial states, which are taken to be the mixed density matrices of thermal states and
squeezed states on each vibrational mode, respectively. Two cases of the entropy correlation,
in which partial entropies fluctuate together in time and they are anti-correlated, happen for a
suitably chosen state. An effective mutual entropy that is defined as the sum of linear entropies
in two modes shows strong correlation with the negativities for the mixed-squeezed states.
The differences between H2O and SO2 in the entropy correlation and the negativities are still
noted. On the other hand, recent theoretical studies have highlighted the feasibility of using
molecular vibrational states for quantum computing [23–25]. It is shown that extremely high
quantum gate fidelity can be achieved for a qubit system based on vibrational eigenstates of
diatomic molecules [24], and the interplay of the anharmonicity and the coupling is of prime
importance in quantum computing based on vibrational qubits [25]. Therefore, the dynamical
properties of both entropy correlation and entanglement in realistic molecules H2O and SO2

may be useful for molecular quantum computing.
The paper is organized as follows. Section 2 presents an algebraic Hamiltonian for highly

excited vibrational spectra in molecules H2O and SO2. Section 3 studies the dynamics of
entropy correlation and entanglement for initial mixed thermal states and squeezed states,
where the entropy of each mode and the entanglement are described in terms of the linear
entropy and two negativities, respectively. The mutual entropy of those states is discussed as
well. Last section concludes the paper with discussions.

2. Algebraic Hamiltonian

There are various algebraic schemes for molecular systems in the literature [22, 27–31], in
which U(4) and U(2) algebras are extensively used [22, 29–31]. The U(4) algebraic model
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becomes quite complicated when the number of atoms in a molecule is larger than four,
while the U(2) algebraic model is particularly well suited for dealing with highly excited
vibrations of polyatomic molecules. Since anharmonic vibrations are usually described by
Morse oscillators that can be realized in terms of the U(2) algebra, the U(2) force-field
expansion has a much faster convergence than the conventional force-field expansion [29].
Furthermore, a simple scheme is proposed to extract the corresponding classical dynamics
from the U(2) model parameters [22]. We are interested in the U(2) algebraic model [22]
for XY-stretching vibrations in a symmetrical triatomic molecule XY2, where the YY-bending
mode is not taken into account since the bending fundamental is about half the wave number
of the stretching fundamental. More importantly, such model with a few parameters has
accurately described the highly excited stretching vibrations in the interested molecules. The
algebraic Hamiltonian [22] reads

Ĥ = Ĥ 0(vb, vc) + Ĥ i, (1)

where Ĥ 0(vb, vc) and Ĥ i are respectively diagonal and non-diagonal Hamiltonians with vb(c)

representing the vibrational quantum number on the XY-stretch bond b(c), which are given by

Ĥ 0(vb, vc) = a
(1,0)

(b,c) (Ĉb + Ĉc) + a
(2,0)

(b,c)

(
Ĉ2

b + Ĉ2
c

)
+ 2a

(1,1)

(b,c) ĈbĈc

+ a
(3,0)

(b,c)

(
Ĉ3

b + Ĉ3
c

)
+ a

(2,1)

(b,c) ĈbĈc(Ĉb + Ĉc), (2)

Ĥ i = m
(1)

(b,c)

(
f̂ +

b f̂
−
c + f̂ −

b f̂ +
c

)
+ m

(2)

(b,c)

(
f̂ +

b f̂
+
b f̂

−
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b f̂ −

b f̂ +
c f̂

+
c

)
, (3)

where a
(j,k)

(b,c) and m
(j)

(b,c) (j = 1, 2, 3 and k = 0, 1) are parameters, the subscripts b and c denote

the two equivalent XY-stretch vibrations, and Ĉi and f̂ ±
i (i = b, c) are U(2) operators with

the matrix elements being

〈Ni, v
′
i |Ĉi |Ni, vi〉 =

[(
1 +

1

Ni

) (
vi +

1

2

)
− 1

Ni

(
vi +

1

2

)2
]

δv′
i ,vi

, (4)

〈Ni, v
′
i |f̂ +

i |Ni, vi〉 =
√

(vi + 1)

(
1 − vi

Ni

)
δv′

i ,vi+1, (5)

〈Ni, v
′
i |f̂ −

i |Ni, vi〉 =
√

vi

(
1 − vi − 1

Ni

)
δv′

i ,vi−1, (6)

where |Ni, vi〉 is the local basis on the stretch bond i with Ni being related to the number
of bound states for the corresponding anharmonic oscillator [31], and vi varies from 0 to Ni

without dissociating the bond. If Ni is taken to be infinite, equation (4) becomes the matrix
elements of the usual harmonic oscillator with equations (5) and (6) being the corresponding
ones of its creation and annihilation operators, respectively. Fitting highly excited spectra of
H2O and SO2 in experiments, Iachello and coworkers have presented the optimized parameters
in the model in table I of [22] with Nb = Nc = 50 for H2O and 170 for SO2, where the classical
dynamics of the classical counterpart of equation (1) has been analyzed. The extension of
the U(2) algebraic model to incorporate bending modes with possible interactions between
vibrational modes [30] becomes a useful model for the description of the highly excited
vibrational spectra of polyatomic molecules. Details for algebraic methods are referred
to [31].
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3. Dynamics of entropy correlation and entanglement

We investigate the dynamics of both entropy correlation and entanglement between vibrational
modes of H2O and SO2 in the model equation (1). Two kinds of initial mixed states, thermal
states and squeezed states, are used to inspect the time evolution of entropy correlation and
entanglement. The importance of studying them in different initial states is twofold. It may be
viewed as a key to the understanding of some of the striking differences between the quantum
and classical description of the world. Continuous-variable-type entangled states including
squeezed states and thermal states have been widely applied to quantum teleportation [32],
quantum cryptography [33] and quantum computation [34]. The mixed density matrices of
initial states of the full system is taken to be

ρbc(0) = ρb(0) ⊗ ρc(0), (7)

where ρi(0) = ∑Ni

vi=0 PA(vi, vi)|Ni, vi〉〈Ni, vi | is the initial density matrix of mode i. The
subscripts A = T and S respectively represent the thermal states and the squeezed states on
mode i with the coefficients being [35]

PT (vi, vi) = 1

1 + vi

[
vi

1 + vi

]vi

(8)

PS(vi, vi) =

⎧⎪⎨
⎪⎩

vi!

[(vi/2)!]2cosh r

[
tanh r

2

]vi

, vi even,

0, vi odd,

(9)

where r = arcsinh
√

vi , and vi is the average quantum number on mode i, which will be taken
as a parameter in what follows. In simulation of entropy correlation and entanglement we
truncated the set of Fock states that compose the corresponding distribution at some vt with∑vt

vi=0 PA(vi, vi) � 1. The accuracy of the results obtained is further tested by adding more
Fock states to that distribution to see whether the calculated values are changed. Now that the
initial density matrices and the quantum Hamiltonian equation (1) are at hand, we are able to
investigate dynamics of both entropy correlation and entanglement in H2O and SO2.

3.1. Entropy correlation

We now study the entropy of each stretching mode in order to explore the behaviors of entropy
correlation between two stretches in H2O and SO2. The entropy of mode b(c) is given by the
linear entropy [7]:

Sb(c)(t) = 1 − Tr[ρb(c)(t)]
2, (10)

where ρb(c)(t) = Trc(b) ρbc(t) is the reduced-density matrix with ρbc(t) being the full density
one, which evolves in time with the Liouville equation,

ρ̇bc(t) = −i [Ĥ , ρbc(t)]. (11)

The purity of mode b(c) is given by Tr[ρb(c)(t)]2. Thus, an increase in the linear entropy is
parallel to a decrease in purity. The entropy of mode b(c) can be described in terms of the
von Neumann entropy, −kB Tr[ρb(c)(t) lnρb(c)(t)]. Both entropies have the same trend for
a bipartite system [36] so that the results of the linear entropy are presented below. In the
calculation of the entropy, we have used many sets of parameters (vb, vc). We would like to
discuss in detail the results for two sets of parameters as examples.

Figures 1 and 2 respectively show the partial entropy changes (PEC) (�S(t) = S(t) −
S(0)) of each stretching mode in H2O and SO2 with initial mixed thermal states (MTS) and
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(a) (b)

(c) (d )

Figure 1. Linear entropy changes �S(t) = S(t) − S(0) of modes b (the solid line) and c (the
dotted line) and the effective mutual entropy (the dashed line) in H2O. Here two kinds of initial
states are used: (a) and (b) for the mixed thermal states with parameters (vb, vc) = (0.21, 0.20)

and (0.80, 0.01), respectively; (c) and (d) for the mixed-squeezed states with same parameters as
the corresponding (a) and (b).

mixed-squeezed states (MSS) given by equations (7)–(9), where two sets of parameters (vb, vc)

are taken to be (0.21, 0.20) and (0.80, 0.01). For both kinds of states with small parameters
(vb, vc) = (0.21, 0.20), the PEC of modes b and c in both molecules are regular with the period
in H2O being larger than that in SO2. In that case, it is easy to note that the PEC of MTS in
figures 1 and 2(a) are anti-correlated while those of MSS in figures 1 and 2(c) are positively
correlated. As the difference between parameters vb and vc increases in the case of
(vb, vc) = (0.80, 0.01), the PEC of two modes become anti-correlated for both states with the
magnitude of PEC increasing, where the PEC oscillations of MSS are irregular, as shown in
figures 1 and 2(b), (d). Once vb is set to be equal to vc, we find that the PEC of the two modes
are indeed identical at all times. We performed the similar simulation with other parameters
and found that the larger the difference between the parameters vb and vc, the more distinct the
anti-correlations of entropies. For anti-correlations MTS has an advantage over MSS since a
smaller difference between vb and vc is needed, as shown in figures 1 and 2(a). The positively
correlated or anti-correlated behaviors of entropies offer a possibility of complement quantum
computing and quantum information processing.

The entropy correlations of two modes can be quantitatively measured by the mutual
entropy that indicates the entropy shared between the two subsystems. It should be mentioned
that in classical information theory the mutual entropy is a very important quantity to analyze
the communication processes and physical transformations. Similarly, the quantum mutual
entropy is of importance in quantum information processing [26, 36] as well as in the study
of the physics in general many-body systems [37].

The mutual entropy is defined by [26]

Sm(t) = Sb(t) + Sc(t) − Sbc(t), (12)
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(a) (b)

(c) (d )

Figure 2. Same as in figure 1 but here is for SO2.

where Sb and Sc are the linear entropy of modes b and c given by equation (10), respectively,
and Sbc is the linear entropy of the full system. The latter is constant for the Hamiltonian
evolution governed by equation (1). Thus one can take the sum of PEC of two modes as an
effective mutual entropy (EME), which is plotted as the dashed curve in figures 1 and 2.
EME is very small in the magnitude of 10−5 in figures 1 and 2(a) and it is irregular
in figure 1(b) for MTS in H2O. It is quasi-periodic as seen by its amplitude of fluctuations
in figures 1(c), (d) and figure 2, which is significantly smaller than that of each PEC in anti-
correlated cases. However, in positively correlated cases as shown in figures 1 and 2(c) its
amplitude is larger than that of each PEC, where EME and PEC have the same period. In the
following subsection, EME will be further discussed with the entanglement measured by the
negative eigenvalues of the partially transposed density matrix.

3.2. Entanglement

We now investigate the entanglement of MTS and MSS in H2O and SO2. There are various
measures of entanglement mentioned in the introduction. Although a particular measure of
entanglement can be analytically determined in some cases, most entanglement measures are
very difficult to calculate in general [19]. Here we are interested in the negativity as a measure
of entanglement since it can be computed efficiently for any mixed states of an arbitrary
bipartite system.

The negativity of a state ρbc(t) is simply defined by [9]

N(t) = max {0,−μmin}, (13)

where μmin is the minimum of the eigenvalues of the partial transpose of state ρbc(t). Partial
transposition is a blockwise transposition of a matrix, which is given by

ρ
T2
iα,jβ(t) ≡ ρiβ,jα(t), (14)
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(a) (b)

(c) (d )

Figure 3. Two negativities N(t) (the solid line) and Ns(t) (the dot-dashed line) and the effective
mutual entropy (the dashed line) in figure 1 for H2O, where the same initial states as in figure 1
are used.

where T2 is the partial transposition for the second subsystem. The negativity is also defined
by [38]

Ns(t) = max{0,−λneg}, (15)

where λneg is the sum of the negative eigenvalues of ρ
T2
iα,jβ (t). Note that Ns(t) corresponds to the

negativity defined by (‖ρT2‖ − 1)/2, and its closely related cousin, the logarithmic negativity
defined by log2‖ρT2‖, where ‖ρT2‖ denotes the trace norm of ρT2 [10]. Negativity, Ns(t),
serves as an upper bound of quantum teleportation capacity, and the logarithmic negativity is
an upper bound to distillable entanglement [10, 39]. How to use the properties of negativity
for quantum teleportation and distillable entanglement will be left to discuss in the future.

Figures 3 and 4 respectively show both negativities for H2O and SO2 with the same states
as figures 1 and 2, where EME is also plotted with a dashed curve for comparison. Some
observations in figures 3 and 4 are in order.

First, comparing figures 3 and 4 with figures 1 and 2, we notice that both negativities
differ from the linear entropies on their oscillatory behaviors, but they have the same period
of oscillation for MSS with small parameters (vb, vc) = (0.21, 0.20) in H2O, as shown in
figure 1(c) and figure 3(c).

Second, it is observed that the two negativities are almost zero in figures 3 and 4(a) for
MTS with parameters (vb, vc) = (0.21, 0.20) where the difference between vb and vc is small
because the system is symmetric about modes b and c. The two negativities increase a little
with the time evolution in figure 4(b) for SO2. From figures 3 and 4 it is easy to note that for
the same parameters in initial states their magnitude of MTS is smaller than that of MSS. That
implies that the larger negativities can be obtained with MSS. In addition, the two negativities
are identical both in their minimal values and in oscillation, where the magnitude of N(t) (the
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(a) (b)

(c) (d )

Figure 4. Same as in figure 3 but here is for SO2.

solid curve) is smaller than that of Ns(t) (the dot-dashed curve). That indicates that the two
negativities are indeed a good measure of entanglement.

Third, we compare both negativities with EME. For MTS the magnitude of EEM is much
larger than that of the negativities, where the oscillation of the negativities is much irregular
than that of EME, as seen in figures 3 and 4(b). For MSS in H2O the negativity Ns(t) is
better identical with EME than the negativity N(t) in both magnitude and period of oscillation
while that keeps in part identical for SO2. That means that EME just for MSS can be regarded
as a measure of entanglement. Such identity remains for MSS with other parameters. It is
interesting to note that the shape of EME for two kinds of states with two sets of parameters
is similar since the ground state and several lower excited states are always dominant in the
initial mixed states.

Finally, two interesting differences in the negativities between H2O and SO2 are noted.
As shown in figures 3 and 4(b), in the early-time evolution the negativities of MTS in H2O
are much larger than those in SO2. The quasi-periodicity of both negativities happens for
MSS while that disappears for MTS, where the quasi-period in H2O is larger than that in SO2.
Those differences can be regarded as dynamical fingerprints of molecular intrinsical property,
since H2O and SO2 are respectively the local- and normal-mode molecules in nature [22].

It should be pointed out that the entanglement properties of pure Fock and coherent
states were discussed for two interacting modes in a pure theoretical model [11], where the
entanglement was measured by the linear entropy and the von Neumann entropy. Since pure
states are difficultly realized in experiments, we have considered two kinds of mixed states and
studied the dynamics of the linear entropy correlation and two negativities for two stretching
modes in a well-established algebraic model with parameters extracted from fitting to highly
excited spectral experimental results for H2O and SO2. That represents a nice alternative with
potential connections to actual experiments, other than the systems usually used in the field of
entanglement. The above-studied correlations among the linear entropy, the mutual entropy
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and negativities in molecules H2O and SO2 are helpful in further understanding of molecular
vibrations on the dynamical aspects of entanglement as well as to processing of molecular
quantum information.

4. Conclusion and discussion

We have explored the dynamical properties of entropy correlation and entanglement of two
anharmonic stretches in molecules H2O and SO2 [22] with various initial mixed states, where
the entropy and the entanglement are respectively measured by the linear entropy and two
negativities. The initial states are taken to be the mixed density matrices of thermal states
and squeezed states on each vibrational mode. It is shown that positively correlated or anti-
correlated behaviors of the linear entropies in each mode depend on initial states. For MSS
with a small difference between parameters vb and vc, the behaviors of linear entropies are
positively correlated. For MTS and MSS with a large difference between the parameters vb

and vc, two linear entropies are anti-correlated.
It is still demonstrated that the negativities and the linear entropy of each mode are

positively correlated only for MSS with small parameters (vb, vc) in H2O while they do not
exhibit any correlated behavior in other cases. In addition, for MSS in both molecules, H2O
and SO2, it is found that the negativities are dominant in positive correlations with EME.
Thus EME could be regarded as a measure of entanglement just for MSS. Any correlation
between the linear entropy and the negativities was not found for MTS in both molecules.
Both negativities of MTS with large difference between vb and vc in H2O are much larger
than those in SO2 in the early-time evolution, and the quasi-period of both negativities
for MSS in H2O is larger than that in SO2. That can be taken as dynamical signatures of
their corresponding intrinsically local- and normal-mode property. We believe that those are
useful in quantum computing based on vibrational states in molecules H2O and SO2 since
using vibrational states of diatomic molecules for quantum computing [23, 24] is feasible.

It is desirable to employ those properties of entropy correlation and entanglement
for molecular quantum computing. It is possible to investigate entanglement quantified by
other measures in polyatomic molecules. It is worth studying other quantity correlations in
molecular systems.
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